Part Number Hot Search : 
NR4018 ED050SC3 CY62177 2SC237 A5800210 A1712 01200 IRL3803V
Product Description
Full Text Search
 

To Download AD8630-15 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  zero - drift, single - supply, rail - to - rail input/output operational amplifier data sheet ad8628 / ad8629 / ad8630 features lowest auto - zero amplifier noise low offset voltage: 1 v input offset drift: 0.002 v/c rail - to - rail input and output swing 5 v single - supply operation high gain, cmrr, and psrr: 1 3 0 db very low input bias current: 100 pa max imum low supply cu rrent: 1.0 ma overload recovery time: 50 s no external components required qualified for a utomotive a pplications applications automotive sensors pressure and position sensors strain gage amplifiers medical instrumentation thermocouple amplifiers precisi on current sensing photodiode amplifier s general description this amplifier has ultralow offset, drift, and bias current. the ad8628 / ad8629 / ad8630 are wide bandwidth auto - zero amplifiers featuring rail - to - rail input and output swing and low noise. operation is fully specified from 2.7 v to 5 v single supply (1.35 v to 2.5 v dual supply). the ad8628 / ad8629 / ad863 0 provide benefits previously found only in expensive auto - zeroing or chopper - stabilized amplifiers. using analog devices, inc., topology, these zero - drift amplifiers combine low cost with high accuracy and low noise. no external capacitor is required. in addition, the ad8628 / ad8629 / ad8630 greatly reduce the digital switching noise found in most chopper - stabilized amplifiers. with an offset voltage of only 1 v, drift of less than 0.005 v/c , and noise of only 0.5 v p - p (0 hz to 10 hz), the ad8628 / ad8629 / ad8630 are suited for applications where error sources cannot be tolerated. position and pressure sensors, medical equipment, and strain gage amplifiers benefit greatly from nearly zero drift over their operating temperature range. many sy stems can take advantage of the rail - to - rail input and output swings provided by the ad8628 / ad8629 / ad8630 to reduce input biasing complexity and maximize snr. pin configurations out 1 v? 2 +in 3 v+ 5 ?in 4 ad8628 t o p view (not to scale) 02735-001 figure 1. 5 - lead tsot (uj - 5) and 5 - lead sot - 23 (rj - 5) nc 1 ?in 2 +in 3 v? 4 nc 8 v+ 7 out 6 nc 5 nc = no connect ad8628 t o p view (not to scale) 02735-002 figure 2. 8 - lead soic_n (r - 8) out a 1 ?in a 2 +in a 3 v? 4 v+ 8 out b 7 ?in b 6 +in b 5 ad8629 t o p view (not to scale) 02735-063 figure 3. 8 - lead soic_n (r - 8) and 8 - lead msop (rm - 8) 1 ?in a 2 +in a 3 v+ 4 out d 14 ?in d 13 +in d 12 v? 1 1 +in b 5 +in c 10 ?in b 6 ?in c 9 out b out a 7 out c 8 ad8630 t o p view (not to scale) 02735-066 figure 4 . 14 - lead soic_n (r - 14) and 14 - lead tssop (ru - 14) the ad8628 / ad8629 / ad8630 are specified for the extended industrial temperature range (?40c to +125c). the ad8628 is available in tiny 5 - lead tsot, 5 - lead sot - 23, and 8 - lead narrow soic plastic packages. the ad8629 is available in the standard 8 - lead narrow soic and msop plastic packages. the ad8630 quad amplifier is available in 14 - lead narrow soic and 14- lead tssop plastic packages. see the ordering guide for autom otive grades. rev. k document feedback information furnished by analog devices is believed to be accurate and reliable. however, no responsibility is assumed by analog devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. specifications subject to change without notice. no license is granted by implication or otherwise under any paten t or patent rights of analog devices. trademarks and registered trademarks are the property of their respective owners. one technology way, p.o. box 9106, norwood, ma 02062 - 9106, u.s.a. tel: 781.329.4700 ? 2002 C 2014 analog devices, inc. all rights reserved. technical support www.analog.com
ad8628/ad8629/ad8630 data sheet table of contents features .............................................................................................. 1 applications ....................................................................................... 1 general d escription ......................................................................... 1 pin configurations ........................................................................... 1 revision history ............................................................................... 3 specificati ons ..................................................................................... 4 electrical characteristics v s = 5.0 v ....................................... 4 electrical characteristics v s = 2.7 v ....................................... 5 absolute maximum ratings ............................................................ 6 thermal characteristics .............................................................. 6 esd caution .................................................................................. 6 typical performance characteristics ............................................. 7 functional description .................................................................. 15 1/f noise ....................................................................................... 15 peak - to - peak noise .................................................................... 16 noise behavior with first - order, low - pass filter ................. 16 total integrated input - referred noise for first - order filter 16 input overvoltage protection ................................................... 17 output phase reversal ............................................................... 17 overload recovery time .......................................................... 17 infrared sensors .......................................................................... 18 precision current shunt sensor ............................................... 19 output amplifier for high precision dacs ........................... 19 outline dimensions ....................................................................... 20 order ing guide .......................................................................... 22 automotive products ................................................................. 22 rev. k | page 2 of 24
data sheet ad8628/ad8629/ad8630 r evision history 8/14 rev. j to rev. k changes to figure 36 and figure 37 ............................................. 12 2 /14 rev. i to rev. j moved revision hist ory ................................................................... 3 changes to figure 17 and figure 18 ............................................... 9 updated outline dimensions ........................................................ 20 4/11 rev. h to rev. i updated outline dimensions ........................................................ 19 changes to ordering guide ........................................................... 21 4/10 rev. g to rev. h change to features list .................................................................... 1 change to general description section ......................................... 1 changes to tab le 3 ............................................................................ 5 updated outline dimensions section .......................................... 19 changes to ordering guide ........................................................... 2 1 6 /08 rev. f to rev. g changes to features section ............................................................ 1 changes to table 5 and figure 42 caption .................................. 12 changes to 1/f noise section and figure 49 ................................ 14 changes to figure 51 caption and figure 55 .............................. 15 changes to figure 57 caption and figure 58 caption ............... 16 changes to figure 60 caption and figure 61 caption ............... 17 changes to figure 64 ...................................................................... 18 2 /0 8 rev. e to rev. f renamed tsot - 23 to tsot ............................................ universal deleted figure 4 and figure 6 .......................................................... 1 changes to figure 3 and figure 4 captions ................................... 1 changes to table 1 ............................................................................ 3 changes to table 2 ............................................................................ 4 change s to table 4 ............................................................................ 5 updated outline dimensions ........................................................ 19 changes to ordering guide ........................................................... 20 5/05 rev. d to rev. e changes to ordering guide ........................................................... 22 1/05 rev. c to rev. d added ad8630 ................................................................... universal added figure 5 and figu re 6 ........................................................... 1 changes to caption in figure 8 and figure 9 ................................ 7 changes to caption in figure 14 .................................................... 8 changes to figure 17 ........................................................................ 8 changes to figure 23 and figure 24 ............................................... 9 changes to figure 25 and figure 26 ............................................. 10 changes to figure 31 ...................................................................... 11 changes to figure 40, figure 41, figure 42 ................................. 12 c hanges to figure 43 and figure 44 ............................................. 13 changes to figure 51 ...................................................................... 15 updated outline dimensions ........................................................ 20 changes to ordering guide ........................................................... 2 0 10/04 rev. b to rev. c updated formatting .......................................................... universal added ad8629 ................................................................... universal added soic and msop pin configurations ................................ 1 added figure 48 .............................................................................. 13 c hanges to figure 62 ...................................................................... 17 added msop package .................................................................... 19 changes to ordering guide ........................................................... 22 10/03 rev. a to rev. b changes to general description ..................................................... 1 changes to absolute maximum ratings ........................................ 4 changes to ordering guide ............................................................. 4 added tsot - 23 package ............................................................... 15 6/03 rev. 0 to rev. a changes to sp ecifications ................................................................. 3 changes to ordering guide ............................................................. 4 change to functional description ................................................ 10 updated outline dimensions ........................................................ 15 10/02 revision 0: initial version rev. k | page 3 of 24
ad8628/ad8629/ad8630 data sheet specifications electrical character istics v s = 5.0 v v s = 5.0 v, v cm = 2.5 v, t a = 25c, unless otherwise noted. table 1 . parameter symbol conditions min typ max unit input characteristics offset voltage v os 1 5 v ? 40 c t a +125 c 10 v input bias current i b ad8628 / ad8629 30 100 pa ad8630 100 300 pa ? 40 c t a +125 c 1.5 na input offset current i os 50 2 00 pa ? 40 c t a +125 c 250 pa input voltage range 0 5 v common - mode rejection ratio cmrr v cm = 0 v to 5 v 120 140 db ? 40 c t a +125 c 115 130 db large signal voltage gain a vo r l = 10 k ? , v o = 0.3 v to 4.7 v 125 145 db ? 40 c t a +125 c 120 135 db offset voltage drift ? v os / ? t ? 40 c t a +125 c 0.002 0.02 v/ c output characteristics output voltage high v oh r l = 100 k ? to ground 4.99 4.996 v ? 40 c t a +125 c 4.99 4.995 v r l = 10 k ? to ground 4.95 4.98 v ? 40 c t a +125 c 4.95 4.97 v output voltage low v ol r l = 100 k ? to v+ 1 5 mv ? 40 c t a +125 c 2 5 mv r l = 10 k ? to v+ 10 20 mv ? 40 c t a +125 c 15 20 mv short - circuit limit i sc 25 50 ma ? 40 c t a +125 c 40 ma output current i o 30 ma ? 40 c t a +125 c 15 ma power supply power supply rejection ratio psrr v s = 2.7 v to 5.5 v, ? 40 c t a +125 c 115 130 db supply current per amplifier i sy v o = v s /2 0.85 1.1 ma ? 40 c t a +125 c 1.0 1.2 ma i nput capacitance c in differential 1.5 pf common mode 8.0 pf dynamic performance slew rate sr r l = 10 k ? 1.0 v/s overload recovery time 0.05 ms gain bandwidth product gbp 2.5 mhz noise performance voltage noise e n p - p 0.1 hz to 10 hz 0.5 v p -p 0.1 hz to 1.0 hz 0.16 v p -p voltage noise density e n f = 1 khz 22 nv/ hz current noise density i n f = 10 hz 5 fa/ hz rev. k | page 4 of 24
data sheet ad8628/ad8629/ad8630 electrical character istics v s = 2.7 v v s = 2.7 v, v cm = 1.35 v, v o = 1.4 v, t a = 25 c, unl ess otherwise noted. table 2 . parameter symbol conditions min typ max unit input characteristics offset voltage v os 1 5 v ? 40 c t a +125 c 10 v input bias current i b ad8628 / ad8629 30 100 pa ad8630 100 300 pa ? 40 c t a +125 c 1.0 1.5 na input of fset current i os 50 200 pa ? 40 c t a +125 c 250 pa input voltage range 0 2.7 v common - mode rejection ratio cmrr v cm = 0 v to 2.7 v 115 130 db ? 40 c t a +125 c 110 120 db large signal voltage gain a vo r l = 10 k ? , v o = 0.3 v to 2.4 v 110 140 db ? 40 c t a +125 c 105 130 db offset voltage drift ? v os / ? t ? 40 c t a +125 c 0.002 0.02 v/ c output characteristics output voltage high v oh r l = 100 k ? to ground 2.68 2.695 v ? 40 c t a +125 c 2.68 2.695 v r l = 10 k ? to ground 2.67 2.68 v ? 40 c t a +125 c 2.67 2.675 v output voltage low v ol r l = 100 k ? to v+ 1 5 mv ? 40 c t a +125 c 2 5 mv r l = 10 k ? to v+ 10 20 mv ? 40 c t a +125 c 15 20 mv short - circuit limit i sc 10 15 ma ? 40 c t a +125 c 10 ma output current i o 10 ma ? 40 c t a +125 c 5 ma power supply power supply rejection ratio psrr v s = 2.7 v to 5.5 v, ? 40 c t a +125 c 115 130 db supply current per amplifier i sy v o = v s /2 0.75 1.0 ma ? 40 c t a +125 c 0.9 1.2 ma input capacitance c in differential 1.5 pf common mode 8.0 pf dynamic performance slew rate sr r l = 10 k ? 1 v/s overload recovery time 0.05 ms gain bandwidth product gbp 2 mhz noise performance voltage noise e n p - p 0.1 hz to 10 hz 0.5 v p -p voltage noise density e n f = 1 khz 22 nv/ hz current noise density i n f = 10 hz 5 fa/ hz rev. k | page 5 of 24
ad8628/ad8629/ad8630 data sheet absolute maximum rat ings table 3 . parameter rating supply voltage 6 v input voltage gnd C 0.3 v to v s + 0.3 v differential input voltage 1 5.0 v output short - circuit duration to gnd indefinite storage temperature range ? 65 c to +150 c operating temperature range ? 40 c to +125 c junction temperature range ? 65 c to +150 c lead temperature (soldering, 60 sec) 300 c esd ad8628 hbm 8 - lead soic 7000v ficdm 8 - lead soic 1500v ficd m 5 - lead tsot 1000v mm 8 - lead soic 200v esd ad8629 hbm 8 - lead soic 4000v ficdm 8 - lead soic 1000v es d ad8630 hbm 14- lead soic 5 000v ficdm 14 - lead soic 15 00v fi cd m 14- lead tssop 15 00v mm 1 4 - lead soic 2 00v 1 differential input voltage is limited to 5 v or the supply voltage, whichever is less. stresses above those listed under absolute maximum ratings may cause permanent damage to the device. this is a stress rating only; functional opera tion of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. thermal characte ristics ja is specified for worst - case conditions, that is, ja is specified for the device soldered in a circuit board for surface - mount packages. this was measured using a standard two - layer board. table 4 . package type ja  jc unit 5 - lead tsot (uj -5) 207 61 c/w 5 - lead sot - 23 (r j -5) 230 146 c/w 8 - lead soic_n (r -8) 158 43 c/w 8 - lead msop (rm-8) 190 44 c/w 14- lead soic_n (r - 14) 105 43 c/w 14- lead tssop (ru - 14) 148 23 c/w esd caution rev. k | page 6 of 24
data sheet ad8628/ad8629/ad8630 typical performance character istics input offset vo lt age (v) number of amplifiers 180 160 140 120 100 80 60 40 20 0 ?2.5 ?1.5 ?0.5 0.5 1.5 2.5 02735-003 v s = 2.7v t a = 25c figure 5 . input offset voltage distribution +85c +25c ?40c v s = 5v input common-mode vo lt age (v) input bias current (pa) 60 40 50 30 10 20 0 0 1 2 3 4 5 6 02735-004 figure 6. ad8628 input bias current vs. input common - mode voltage 150c 125c input common-mode vo lt age (v) input bias current (pa) 1500 500 1000 0 ?1000 ?500 ?1500 0 1 2 3 4 5 6 02735-005 v s = 5v figure 7. ad8628 input bias current vs. input common - mode voltage input offset vo lt age (v) number of amplifiers 100 80 90 60 70 40 50 10 20 30 0 ?2.5 ?1.5 ?0.5 0.5 1.5 2.5 02735-006 v s = 5v v cm = 2.5v t a = 25c figure 8 . input offset voltage distribution v s = 5v t a = ?40c t o +125c tcvos (nv/c) number of amplifiers 7 6 5 4 3 2 1 0 0 2 4 6 8 10 02735-007 figure 9 . input offset voltage drift load current (ma) output vo lt age (mv) 1k 100 10 1 0.1 0.01 0.0001 0.001 0.1 0.01 1 10 02735-008 v s = 5v t a = 25c source sink figure 10 . output voltage to supply rail vs. load current rev. k | page 7 of 24
ad8628/ad8629/ad8630 data sheet load current (ma) output vo lt age (mv) 1k 100 10 1 0.1 0.01 0.0001 0.001 0.1 0.01 1 10 02735-009 v s = 2.7v source sink figure 11 . output voltage to supply rail vs. load current v s = 5v v cm = 2.5v t a = ?40c t o +150c temper a ture (c) input bias current (pa) 1500 1 150 900 450 100 0 ?50 0 25 ?25 50 75 100 125 150 175 02735-010 figure 12 . ad8628 input bias current vs. temperature t a = 25 c 5v 2.7v temper a ture ( c ) supp l y current (a) 1250 1000 750 500 250 0 ?50 0 50 150 100 200 02735-0 1 1 figure 13 . supply current vs. temperature t a = 25c supp l y vo lt age (v) supp l y current (a) 1000 800 600 400 200 0 0 1 2 4 5 3 6 02735-012 figure 14 . supply current vs. supply voltage frequenc y (hz) open-loo p gain (db) 60 40 20 ?20 0 10k 100k 1m 10m 02735-013 45 90 135 180 225 0 phase shift (degrees) v s = 2.7v c l = 20pf r l = m = 45 gain phase figur e 15 . open - loop gain and phase vs. frequency frequenc y (hz) open-loo p gain (db) 70 60 50 40 30 20 0 ?10 ?20 10 ?30 10k 100k 1m 10m 02735-014 45 90 135 180 225 0 phase shift (degrees) v s = 5v c l = 20pf r l = m = 52.1 gain phase figure 16 . open - loop gain and phase vs. frequency rev. k | page 8 of 24
data sheet ad8628/ad8629/ad8630 rev. k | page 9 of 24 frequency (hz) closed-loop gain (db) 70 60 50 40 30 20 0 ?10 ?20 10 ?30 1k 10k 100k 1m 10m 02735-015 v s = 2.7v c l = 20pf r l = 2k ? a v = 100 a v = 10 a v = 1 figure 17. closed-loop gain vs. frequency frequency (hz) closed-loop gain (db) 70 60 50 40 30 20 0 ?10 ?20 10 ?30 1k 10k 100k 1m 10m 02735-016 v s = 5v c l = 20pf r l = 2k ? a v = 100 a v = 10 a v = 1 figure 18. closed-loop gain vs. frequency frequency (hz) output impedance ( ? ) 300 270 240 210 180 150 90 60 30 120 0 100 1k 10k 100k 1m 10m 100m 02735-017 a v = 100 a v = 10 a v = 1 v s = 2.7v figure 19. output im pedance vs. frequency frequency (hz) output impedance ( ? ) 300 270 240 210 180 150 90 60 30 120 0 100 1k 10k 100k 1m 10m 100m 02735-018 a v = 100 a v = 1 a v = 10 v s = 5v figure 20. output im pedance vs. frequency v s = 1.35v c l = 300pf r l = a v = 1 time (4s/div) vol t age (500mv/div) 02735-019 0v figure 21. large signal transient response v s = 2.5v c l = 300pf r l = a v = 1 time (5s/div) voltage (1v/div) 0v 02735-020 figure 22. large signal transient response
ad8628/ad8629/ad8630 data sheet v s = 1.35v c l = 50pf r l = a v = 1 time (4s/div) vo lt age (50mv/div) 0v 02735-021 figure 23 . small signal transient response v s = 2.5v c l = 50pf r l = a v = 1 time (4s/div) volt age (50mv/div) 0v 02735-022 figure 24 . small signal transient response ca p acitive load (pf) overshoot (%) 100 90 80 70 60 50 30 20 10 40 0 1 10 100 1k 02735-023 os? os+ v s = 1.35v r l = 2k? t a = 25c figure 25 . small signal overshoot vs. load capacitance ca p acitive load (pf) overshoot (%) 80 70 60 50 30 20 10 40 0 1 10 100 1k 02735-024 os? os+ v s = 2.5v r l = 2k? t a = 25c figure 26 . small signal overshoot vs. load capacitance time (2s/div) vo lt age (v) v out 0v 0v v in 02735-025 v s = 2.5v a v = ?50 r l = 10k? c l = 0pf ch1 = 50mv/div ch2 = 1v/div figure 27 . positive overvoltage recovery time (10s/div) vo lt age (v) v out 0v 0v v in 02735-026 v s = 2.5v a v = ?50 r l = 10k? c l = 0pf ch1 = 50mv/div ch2 = 1v/div figure 28 . negative overvoltage rec overy rev. k | page 10 of 24
data sheet ad8628/ad8629/ad8630 time (200s/div) vo lt age (1v/div) 0v 02735-027 v s = 2.5v v in = 1khz @ 3v p-p c l = 0pf r l = 10k? a v = 1 figure 29 . no phase reversal frequenc y (hz) cmrr (db) 140 120 100 80 60 40 0 ?20 ?40 20 ?60 100 1k 10k 100k 1m 10m 02735-028 v s = 2.7v figure 30 . cmrr vs. frequency frequenc y (hz) cmrr (db) 140 120 100 80 60 40 0 ?20 ?40 20 ?60 100 1k 10k 100k 1m 10m 02735-029 v s = 5v figure 31 . cmrr vs. frequency frequenc y (hz) psrr (db) 140 120 100 80 60 40 0 ?20 ?40 20 ?60 100 1k 10k 100k 1m 10m 02735-030 v s = 1.35v +psrr ?psrr figure 32 . psrr vs. frequency frequenc y (hz) psrr (db) 140 120 100 80 60 40 0 ?20 ?40 20 ?60 100 1k 10k 100k 1m 10m 02735-031 v s = 2.5v +psrr ?psrr figure 33 . psrr vs. frequency frequenc y (hz) output swing (v p-p) 3.0 2.5 2.0 1.5 1.0 0.5 0 100 1k 10k 100k 1m 02735-032 v s = 2.7v r l = 10k? t a = 25c a v = 1 figure 34 . maximum output swing vs. frequency rev. k | page 11 of 24
ad8628/ad8629/ad8630 data sheet frequenc y (hz) output swing (v p-p) 5.5 2.5 3.0 3.5 4.0 4.5 5.0 2.0 1.5 1.0 0.5 0 100 1k 10k 100k 1m 02735-033 v s = 5v r l = 10k? t a = 25c a v = 1 figure 35 . maximum output swing vs. frequency time (1s/div) vo lt age (v) 0.60 0.45 0.30 0.15 ?0.15 ?0.30 ?0.45 0 ?0.60 02735-034 v s = 2.7v figure 36 . 0.1 hz to 10 hz noise time (1s/div) vo lt age (v) 0.60 0.45 0.30 0.15 ?0.15 ?0.30 ?0.45 0 ?0.60 02735-035 v s = 5v figure 37 . 0.1 hz to 10 hz noise frequenc y (khz) vo lt age noise densit y (nv/hz) 120 105 90 75 45 30 15 60 0 0 0.5 1.0 1.5 2.0 2.5 02735-036 v s = 2.7v noise a t 1khz = 21.3nv figure 38 . voltage noise density at 2.7 v from 0 hz to 2.5 khz frequenc y (khz) vo lt age noise densit y (nv/hz) 120 105 90 75 45 30 15 60 0 0 5 10 15 20 25 02735-037 v s = 2.7v noise a t 10khz = 42.4nv figure 39 . voltage noise density at 2.7 v from 0 hz to 25 khz frequenc y (khz) vo lt age noise densit y (nv/hz) 120 105 90 75 45 30 15 60 0 0 0.5 1.0 1.5 2.0 2.5 02735-038 v s = 5v noise a t 1khz = 22.1nv figure 40 . voltage noise density at 5 v from 0 hz to 2.5 khz rev. k | page 12 of 24
data sheet ad8628/ad8629/ad8630 frequenc y (khz) volt age noise densit y (nv/hz) 120 105 90 75 45 30 15 60 0 0 5 10 15 20 25 02735-039 v s = 5v noise a t 10khz = 36.4nv figure 41 . voltage noise density at 5 v from 0 hz to 25 khz frequenc y (khz) vo lt age noise densit y (nv/hz) 120 105 90 75 45 30 15 60 0 0 5 10 02735-040 v s = 5v figure 42 . voltage noise density at 5 v from 0 hz to 10 k hz v s = 2.7v t o 5v t a = ?40c t o +125c temper a ture (c) power supp l y rejection (db) 150 130 120 140 1 10 100 90 60 70 80 50 ?50 0 25 ?25 50 75 100 125 02735-041 figure 43 . power supply rejection vs. temperature temper a ture (c) output shor t -circuit current (ma) 150 100 50 0 ?50 ?100 ?50 25 50 75 0 ?25 100 125 150 175 02735-042 v s = 2.7v t a = ?40c t o +150c i sc ? i sc + figure 44 . output short - circuit current vs. temperature temper a ture (c) output shor t -circuit current (ma) 150 100 50 0 ?50 ?100 ?50 25 50 75 0 ?25 100 125 150 175 02735-043 v s = 5v t a = ?40c t o +150c i sc ? i sc + figure 45 . output short - circuit current vs. temperature temper a ture (c) outpu t - t o-rai l vo lt age (mv) 1k 100 10 1 0.1 ?50 25 50 75 0 ?25 100 125 150 175 02735-044 v s = 5v v cc ? v oh @ 1k? v cc ? v oh @ 10k? v cc ? v oh @ 100k? v o l ? v ee @ 1k? v o l ? v ee @ 10k? v o l ? v ee @ 100k? rev. k | page 13 of 24
ad8628/ad8629/ad8630 data sheet temper a ture (c) outpu t - t o-rai l vo lt age (mv) 1k 100 10 1 0.1 ?50 25 50 75 0 ?25 100 125 150 175 02735-045 v s = 2.7v v cc ? v oh @ 1k? v cc ? v oh @ 10k? v cc ? v oh @ 100k? v o l ? v ee @ 1k? v o l ? v ee @ 10k? v o l ? v ee @ 100k? figure 47 . output - to- rail voltage vs. temperature frequenc y (hz) channe l se p ar a tion (db) 140 120 100 80 60 40 20 0 1k 10k 100k 1m 10m 02735-062 v out v in 28mv p-p ?2.5v +2.5v r1 10k? v? v+ ? + v+ v? a b r2 100? v s = 2.5v figure 48 . ad8629 / ad8630 channel separation vs. frequency rev. k | page 14 of 24
data sheet ad8628/ad8629/ad8630 functional descripti on the ad8628 / ad8629 / ad8630 are single - supply, ultrahigh precision rail - to - rail input and output operational amplifiers. the typical offset voltage of less than 1 v allows these amplifi ers to be easily config ured for high gains without risk of excessive output voltage errors. the extremely sma ll tempera ture drift of 2 nv/c ensures a minimum offs et voltage error over their entire temperature range of ?40c to +125c, making these amplifiers ideal for a variety of sensitive measurement applica - tions in harsh operating environments. the ad8628 / ad8629 / ad8630 achieve a high degree of preci sion through a patented combination of auto - zeroing and chopping. this unique topology allows the ad8628 / ad8629 / ad8630 to maintain their low offset voltage over a wide temperature range and over their operating lifetime. the ad8628 / ad8629 / ad8630 a lso optimize the noise and band width over previous generations of auto - zero amplifiers, offering the lowest voltage noise of any auto - zero amplifier by more than 50%. previous designs u sed either auto - zeroing or chopping to add precision to the specifications of an amplifier. auto - zeroing results in low noise energy at the auto - zeroing frequency, at the expense of higher low frequenc y noise due to aliasing of wide band noise into the auto - zeroed frequency band. chopping results in lower low frequency noise at the expense of larger noise energy at the chopping frequency. the ad8628 / ad8629 / ad8630 family uses both auto - zeroing and chopping in a patented ping - pong arrangement to obtain lower low frequency noise together with lower energy at the ch opping and auto - zeroing frequencies, maximizing the signal - to - noise ratio for the majority of applications without the need for additional filtering. the relatively high clock frequency of 15 khz simplifies filter requirements for a wide, useful noise - free bandwidth. the ad8628 is among the few auto - zero amplifiers offered in th e 5 - lead tsot package. this provides a significant improvement over the ac parameters of the previous auto - zero amp lifiers. the ad8628 / ad8629 / ad8630 have low noise over a relatively wide bandwidth (0 hz to 10 khz) and can be used where the highest dc precision is required. in systems with signal bandwidths of from 5 khz to 10 khz, the ad8628 / ad8629 / ad8630 provide true 16 - bit accuracy, making them the best choice for very high resolution systems. 1/ f noise 1/f noise, also know n as pink noise, is a major contributor to errors in dc - coupled measurements. this 1/f noise error term can be in the range of several v or more, and, when amplified with the closed - loop gain of the circuit, can show up as a large output offset. for examp le, when an amplifier with a 5 v p - p 1/f nois e is configured for a gain of 1 000, its output has 5 mv of error due to the 1/f noise. however, the ad8628 / ad8629 / ad8630 eliminate 1/f noise internally, thereby greatly reducing output errors. the internal elimination of 1/f noise is accomplished as follows. 1/f no ise appears as a slowly varying offset to the ad8628 / ad8629 / ad8630 inputs. auto - zeroing corrects any dc or low frequency offset. therefore, the 1/f noise component is essentially removed, leaving the ad8628 / ad8629 / ad8630 free of 1/f noise. one adv antage that the ad8628 / ad8629 / ad8630 bring to system applications over competitive auto - zero amplifiers is their very low noise. the comparison shown in figure 49 indicates an input - referred noise density of 19.4 nv/hz at 1 khz for the ad8628 , which is much better than the competitor a and competitor b . the noise is flat from dc to 1.5 khz, slowly increasing up to 20 khz. the lower noise at low frequency is desirable where auto - zero amplifiers are widely used. 02735-046 mk at 1khz for all 3 graphs frequency (khz) voltage noise density (nv/hz) 120 105 90 75 60 45 30 15 0 0 4 2 8 6 10 12 competitor a (89.7nv/hz) competitor b (31.1nv/hz) ad8628 (19.4nv/hz) figure 49 . noise spectral density of ad8628 vs. competition rev. k | page 15 of 24
ad8628/ad8629/ad8630 data sheet pea k - to - peak noise because of the ping - pong action between auto - zeroing and chopping, the peak - to - peak noise of the ad8628 / ad8 629/ ad8630 is much lower than the competition. figure 50 and figure 51 show this comparison. e n p-p = 0.5v bw = 0.1hz t o 10hz time (1s/div) volt age (0.5v/div) 02735-047 figure 50 . ad8628 peak - to- peak noise e n p-p = 2.3v bw = 0.1hz t o 10hz time (1s/div) vo lt age (0.5v/div) 02735-048 figure 51 . competitor a peak - to - peak noise nois e behavior with firs t - order , low - pass filter the ad8628 was simulated as a low - pass filter ( see figure 53) and then configured as shown in figure 52 . the behavior of th e ad8628 matches the simulated data. it was verified that noise is rolled off by first - order filtering. figure 53 and figure 54 show the difference between the simulated and actual transfer functions of the circuit shown in figure 52. 470pf out 100k? in 1k? 02735-049 figure 52 . first - order low - pass filter test circuit , 101 g ain and 3 khz corner frequency frequenc y (khz) noise (db) 50 45 40 35 30 25 15 10 5 20 0 0 30 60 100 90 80 70 50 40 20 10 02735-050 figure 53 . simulation transfer function of the test circuit in figure 52 frequenc y (khz) noise (db) 50 45 40 35 30 25 15 10 5 20 0 0 30 60 100 90 80 70 50 40 20 10 02735-051 figure 54 . actual transfer function of the test circuit in figure 52 the measured noise spectrum of the test circuit charted in figure 54 shows that noise between 5 khz and 45 khz is successfully rolled off by the first - order filt er. total integrated inp ut - referred noise for first - order filter for a first - order filter, the total integrated noise from the ad8628 is lower than the noise of competitor a . 3db filter bandwidth (hz) rms noise (v) 10 1 0.1 10 100 10k 1k 02735-052 competitor a ad8551 ad8628 figure 55 . rms noise vs. 3 db filter bandwidth in hz rev. k | page 16 of 24
data sheet ad8628/ad8629/ad8630 input overvoltage pr otection although the ad8628 / ad8629 / ad8630 are rail - to - rail input amplifiers, care should be taken to ensure that the potential difference between the inputs does not exceed the supply voltage. under normal negative feedback operating conditions, the amplifier corrects its output to ensure that the two inputs are at the same voltage. however, if either input exceeds either supply rail by more than 0.3 v, large currents begin to flow through the esd protection diodes in the amp lifier. these diodes are connected between the inputs and each supply rail to protect the input transistors against an electrostatic discharge event, and they are normally reverse - biased. however, if the input voltage exceeds the supply voltage, these esd diodes can become forward - biased. without current limiting, excessive amounts of current could flow through these diodes, causing permanent damage to the device. if inputs are subject to overvoltage, appropriate series resistors should be inserted to lim it the diode current to less than 5 ma maximum. output phase reversa l output phase reversal occurs in some amplifiers when the input common - mode voltage range is exceeded. as common - mode voltage is moved outside the common - mode range, the outputs of these amplifiers can suddenly jump in the opposite direction to the supply rail. this is the result of the differential input pair shutting down, causing a radical shifting of internal voltages that results in the erratic output behavior. the ad8628 / ad8629 / ad8630 amplifiers have been carefully designed to prevent a ny output phase reversal, provided that both inputs are maintained within the supply voltages. if one or both inputs could exceed either supply voltage, a resistor should be placed in series with the input to l imit the current to less than 5 ma. this ensur es that the output does not reverse its phase. overload recovery ti me many auto - zero amplifiers are plagued by a long overload recovery time, often in ms, due to the complicated settling behavior of the internal nulling loops after saturation of the output s. the ad8628 / ad8629 / ad8630 have been designed s o that internal settling occurs within two clock cycles after output saturation occur s. this results in a much shorter recovery time, less than 10 s, when compared to other auto - zero amplifiers. the wide bandwidth of the ad8628 / ad8629 / ad8630 enhances performance when the parts are used to drive loads that inject tr ansients into the outputs. this is a common situation when an amplifier is used to drive the input of switched capacitor adcs. time (500s/div) vo lt age (v) v out 0v 0v v in 02735-053 ch1 = 50mv/div ch2 = 1v/div a v = ?50 figure 56 . positive input overload recovery for the ad8628 time (500s/div) vo lt age (v) v out 0v 0v v in 02735-054 ch1 = 50mv/div ch2 = 1v/div a v = ?50 figure 57 . positive input overload recovery for competitor a time (500s/div) vo lt age (v) v out 0v 0v v in 02735-055 ch1 = 50mv/div ch2 = 1v/div a v = ?50 figure 58 . positive input overload recovery for competitor b rev. k | page 17 of 24
ad8628/ad8629/ad8630 data sheet time (500s/div) vo lt age (v) v out 0v 0v v in 02735-056 ch1 = 50mv/div ch2 = 1v/div a v = ?50 figure 59 . negative input o verload recovery for the ad8628 time (500s/div) vo lt age (v) v out 0v 0v v in 02735-057 ch1 = 50mv/div ch2 = 1v/div a v = ?50 figure 60 . negative input overload recovery for competitor a time (500s/div) vo lt age (v) v out 0v 0v v in 02735-058 ch1 = 50mv/div ch2 = 1v/div a v = ?50 figure 61 . negative input overload recov ery for competitor b the results shown in figure 56 to figure 61 are summarized in table 5 . table 5 . overloa d recovery time odel ositive overload recovery s eative overload recovery s ad8628 6 9 competitor a 650 25,000 competitor b 40,000 35,000 infrared sensors infrared (ir) sensor s, particularly thermopiles, are increasingly being used in temperature measurement for applications as wide ranging as automotive clim ate control, human ear thermometers , home insulation analysis, and automotive repair diagnostics. the relatively small ou tput signal of the sensor demands high gain with very low offset voltage and drift to avoid dc errors. if interstage ac coupling is used, as in figure 62 , low offset and drift prevent the output of the input amplifi er from drifting close to saturation. the low input bias currents generate minimal errors from the output impedance of the sensor . as with pressure sensors, the very low amplifier drift with time and temperature elimi nate additional errors once the tempera ture measurement is calibrated. the low 1/f no ise improves snr for dc measure ments taken over periods often exceeding one - fifth of a second. figure 62 shows a circuit that can amplify ac signals from 100 v to 300 v up to the 1 v to 3 v levels, with a gain of 10,000 for accurate analog - to - digital conversion. 5v 100k? 10k? 5v 100v to 300v 100? to bias voltage 10k? f c 1.6hz ir detector 100k? 10f 1/2 ad8629 1/2 ad8629 02735-059 figure 62 . ad8629 used as preamplifier for thermopile rev. k | page 18 of 24
data sheet ad8628/ad8629/ad8630 rev. k | page 19 of 24 precision current shunt sensor a precision current shunt sensor benefits from the unique attributes of auto-zero amplifiers when used in a differencing configuration, as shown in figure 63. current shunt sensors are used in precision current sources for feedback control systems. they are also used in a variety of other applications, including battery fuel gauging, laser diode power measurement and control, torque feedback controls in electric power steering, and precision power metering. r s 0.1 ? supply i r l 100? 100k ? 5v 100? 100k ? e = 1000 r s i 100mv/ma ad8628 02735-060 c c figure 63. low-side current sensing in such applications, it is desirable to use a shunt with very low resistance to minimize the series voltage drop; this minimizes wasted power and allows the measurement of high currents while saving power. a typical shunt might be 0.1 . at measured current values of 1 a, the output signal of the shunt is hundreds of millivolts, or even volts, and amplifier error sources are not critical. however, at low measured current values in the 1 ma range, the 100 v output voltage of the shunt demands a very low offset voltage and drift to maintain absolute accuracy. low input bias currents are also needed, so that injected bias current does not become a significant percentage of the measured current. high open-loop gain, cmrr, and psrr help to maintain the overall circuit accuracy. as long as the rate of change of the current is not too fast, an auto-zero amplifier can be used with excellent results. output amplifier for high precision dacs the ad8628 / ad8629/ ad8630 are used as output amplifiers for a 16-bit high precision dac in a unipolar configuration. in this case, the selected op amp needs to have a very low offset voltage (the dac lsb is 38 v when operated with a 2.5 v reference) to eliminate the need for output offset trims. the input bias current (typically a few tens of picoamperes) must also be very low because it generates an additional zero code error when multiplied by the dac output impedance (approximately 6 k). rail-to-rail input and output provide full-scale output with very little error. the output impedance of the dac is constant and code independent, but the high input impedance of the ad8628/ ad8629/ ad8630 minimizes gain errors. the wide bandwidth of the amplifiers also serves well in this case. the amplifiers, with settling time of 1 s, add another time constant to the system, increasing the settling time of the output. the settling time of the ad5541 is 1 s. the combined settling time is approximately 1.4 s, as can be derived from the following equation: ?? ? ? ?? 2 2 ad8628 s s s tdact totalt ? ? 02735-061 ad5541/ad5542 ad8628 dgnd *ad5542 only v dd ref(reff*) refs* v out sclk din cs agnd 5 v 2.5 v unipolar output ldac* 0.1f 10f 0.1f serial interface figure 64. ad8628 used as an output amplifier
ad8628/ad8629/ad8630 data sheet rev. k | page 20 of 24 outline dimensions 100708-a * compliant to jedec standards mo-193-ab with the exception of package height and thickness. 1.60 bsc 2.80 bsc 1.90 bsc 0.95 bsc 0.20 0.08 0.60 0.45 0.30 8 4 0 0.50 0.30 0.10 max * 1.00 max * 0.90 max 0.70 min 2.90 bsc 54 12 3 seating plane figure 65. 5-lead thin small outline transistor package [tsot] (uj-5) dimensions shown in millimeters compliant to jedec standards mo-178-aa 10 5 0 seating plane 1.90 bsc 0.95 bsc 0.60 bsc 5 123 4 3.00 2.90 2.80 3.00 2.80 2.60 1.70 1.60 1.50 1.30 1.15 0.90 0 .15 max 0 .05 min 1.45 max 0.95 min 0.20 max 0.08 min 0.50 max 0.35 min 0.55 0.45 0.35 11-01-2010-a figure 66. 5-lead small outline transistor package [sot-23] (rj-5) dimensions shown in millimeters controlling dimensions are in millimeters; inch dimensions (in parentheses) are rounded-off millimeter equivalents for reference only and are not appropriate for use in design. compliant to jedec standards ms-012-aa 012407-a 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) 0.50 (0.0196) 0.25 (0.0099) 45 8 0 1.75 (0.0688) 1.35 (0.0532) seating plane 0.25 (0.0098) 0.10 (0.0040) 4 1 85 5.00 (0.1968) 4.80 (0.1890) 4.00 (0.1574) 3.80 (0.1497) 1.27 (0.0500) bsc 6.20 (0.2441) 5.80 (0.2284) 0.51 (0.0201) 0.31 (0.0122) coplanarity 0.10 figure 67. 8-lead standard small outline package [soic_n] narrow body (r-8) dimensions shown in millimeters and (inches) compliant to jedec standards mo-187-aa 6 0 0.80 0.55 0.40 4 8 1 5 0.65 bsc 0.40 0.25 1.10 max 3.20 3.00 2.80 coplanarity 0.10 0.23 0.09 3.20 3.00 2.80 5.15 4.90 4.65 pin 1 identifier 15 max 0.95 0.85 0.75 0.15 0.05 10-07-2009-b figure 68. 8-lead mini small outline package [msop] (rm-8) dimensions shown in millimeters
data sheet ad8628/ad8629/ad8630 rev. k | page 21 of 24 controlling dimensions are in millimeters; inch dimensions (in parentheses) are rounded-off millimeter equivalents for reference only and are not appropriate for use in design. compliant to jedec standards ms-012-ab 060606-a 14 8 7 1 6.20 (0.2441) 5.80 (0.2283) 4.00 (0.1575) 3.80 (0.1496) 8.75 (0.3445) 8.55 (0.3366) 1.27 (0.0500) bsc seating plane 0.25 (0.0098) 0.10 (0.0039) 0.51 (0.0201) 0.31 (0.0122) 1.75 (0.0689) 1.35 (0.0531) 0.50 (0.0197) 0.25 (0.0098) 1.27 (0.0500) 0.40 (0.0157) 0.25 (0.0098) 0.17 (0.0067) coplanarity 0.10 8 0 45 figure 69. 14-lead standard small outline package [soic_n] narrow body (r-14) dimensions shown in millimeters and (inches) compliant to jedec standards mo-153-ab-1 061908-a 8 0 4.50 4.40 4.30 14 8 7 1 6.40 bsc pin 1 5.10 5.00 4.90 0.65 bsc 0.15 0.05 0.30 0.19 1.20 max 1.05 1.00 0.80 0.20 0.09 0.75 0.60 0.45 coplanarity 0.10 seating plane figure 70. 14-lead thin shrink small outline package [tssop] (ru-14) dimensions shown in millimeters
ad8628/ad8629/ad8630 data sheet ordering guide model 1 , 2 temperature range package description package option branding ad8628auj - reel ? 40 c to +125 c 5 - lead tsot uj -5 ayb ad8628auj - reel7 ? 40 c to +125 c 5 - lead tsot uj -5 ayb ad8628aujz -r2 ? 40 c to +125 c 5 - lead tsot uj -5 a0l ad8628aujz - reel ? 40 c to +125 c 5 - lead tsot uj -5 a0l ad8628aujz - reel7 ? 40 c to +125 c 5 - lead tsot uj -5 a0l ad8 628arz ? 40 c to +125 c 8 - lead soic_n r -8 ad8628arz - reel ? 40 c to +125 c 8 - lead soic_n r -8 ad8628arz - reel7 ? 40 c to +125 c 8 - lead soic_n r -8 ad8628artz - r2 ? 40 c to +125 c 5 - lead sot - 23 rj -5 a0l ad8628artz - reel7 ? 40 c to +125 c 5 - lead sot - 23 rj -5 a0l ad8628 w arz -rl ? 40 c to +125 c 8 - lead soic_n r -8 a0l ad8628 w arz -r 7 ? 40 c to +125 c 8 - lead soic_n r -8 a0l ad8628 w artz - rl ? 40 c to +125 c 5 - lead sot - 23 rj - 5 a0l ad8628wartz -r 7 ? 40 c to +125 c 5 - lead sot - 23 rj -5 a0l ad8628 w aujz -r l ? 40 c to +125 c 5 - lead t sot uj -5 a0l ad8628 waujz -r 7 ? 40 c to +125 c 5 - lead tsot uj -5 a0l ad8629arz ? 40 c to +125 c 8 - lead soic_n r -8 ad8629arz - reel ? 40 c to +125 c 8 - lead soic_n r -8 ad8629arz - reel7 ? 40 c to +125 c 8 - lead soic_n r -8 ad8629armz ? 40 c to +125 c 8 - lead msop r m - 8 a06 ad8629armz - reel ? 40 c to +125 c 8 - lead msop rm - 8 a06 ad8629warz -rl ? 40 c to +125 c 8 - lead soic_n r -8 ad8629war z -r 7 ? 40 c to +125 c 8 - lead soic_n r -8 ad8630aruz ? 40 c to +125 c 14 - lead tssop ru - 14 ad8630aruz - reel ? 40 c to +125 c 14- lead tsso p ru -14 ad8630arz ? 40 c to +125 c 14- lead soic_n r -14 ad8630arz - reel ? 40 c to +125 c 14- lead soic_n r -14 ad8630arz - ree l 7 ? 40 c to +125 c 14- lead soic_n r -14 ad8630 w arz -r l ? 40 c to +125 c 14- lead soic_n r -14 ad8630 warz -r 7 ? 40 c to +125 c 14- lead s oic_n r -14 1 z = rohs compliant part. 2 w = qualified for automotive applications. automotive products the ad8628w / ad8629w / ad8630w models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. note that these automotive models may have specifications that differ from the comme rcial models; therefore, designers shou ld review the specifications section of this data sheet carefully. only the automotive grade products shown are available for use in automotive applications. co ntact your local analog devices account representative for specific product ordering information and to obtain the specific automotive reliability reports for these models. rev. k | page 22 of 24
data sheet ad8628/ad8629/ad8630 notes rev. k | page 23 of 24
ad8628/ad8629/ad8630 data sheet notes ? 2002 C 2014 analog devices, inc. all rights reserved. trademarks and registered trademarks are the property of their respective owners. d02735 - 0- 8/14(k) rev. k | page 24 of 24


▲Up To Search▲   

 
Price & Availability of AD8630-15

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X